The ability of a soil to provide the essential nutrients required for optimum plant growth

43

Soil Fertility -

Essential Plant Nutrients - 16 (18)

Carbon - Hydrogen - Oxygen

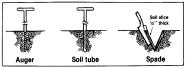
- □ Major (Macro)Nutrients □ Micronutrients

 - nitrogen (N) phosphorus (P)
- potassium (K)
- □ Secondary Nutrients
- boron (B) chlorine (Cl) copper (Cu) iron Fe
- calcium (Ca) magnesium (Mg) sulfur (S)
- manganese (Mn) molybdenum (Mo)
- zinc (Zn)

44

Soil Fertility - Maintenance

■Soil Testing

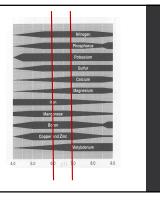

□Nutrient Replacement

Soil Testing

- How often? 2-4 years (4 years common)
- When? Commonly in fall, growing interest in summer, however consistency of time most important
- How deep? Normally 7 inch depth
- How many tests?
- One composite (five samples) per 2.5 acres (some firms use 3 or 4 acre grids)
 GPS mapping for variable application

46

Soil Fertility - Soil Testing Procedures


47

Soil Testing

- $\hbox{$\scriptstyle \bullet$ \underline{What tests to run?}$}$
- $\hbox{$^{\bullet}$ Wide variety of} \overline{\text{fe}} \text{red} \\$
- $^{\bullet}\,\mathrm{pH},\,\mathrm{P}_{\mathrm{l}},\,\mathrm{K},\,\mathrm{perhaps}$ Organic Matter
- ${}^{\bullet}\mathrm{Reliability}$

Test	Rating"
Water pH	930
Suit pl5	.30
Buffer pH1	30
Exchangeable H	10
Phosphoras	83
Preasures	80
Boyon: affalfa	60
Scroe: com and soybeam	30
from pH > 7.5	30
Iron pit < 7.5	10
Organic matter	75
Calcium	40
Magnesiani	40
Cation-exchange capturity	90
Setter	40
Ziac	-45
Morganic plt > 7.5	.40
Mirganno: pH < 7.5	.10
Copper, organic souls	30
	- 5

Relationship of pH to Availability of Plant Nutrients in the Soil

49

Soil Fertility -

Soil Acidity / Alkalinity

- · Most serious limitation
- \cdot Seem to have less focus on pH
- pH is key to all nutrients
- · Challenge with short-term leasing, frequent corn production, high N use, cash rent

50

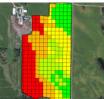
Soil Fertility -

pH Goals

- \cdot 6.0 is minimum pH goal for corn & soybeans
- · Choice of materials
- Ag lime (quarry variance check CCE & fineness)
 CCE = Calcium Carbonate Equivalence (quality)
 Fineness = grinding to what size
- Pelleted lime
- · Normally apply 2 to 4 tons/acre as needed
- ${\scriptstyle \bullet}$ Prescription application now common -VRT

Fertilizer Analysis

Incomplete Complete 10 -10 -10 46 – 0 - 0 N – P - K N-P-K46% Nitrogen □ 10% Nitrogen

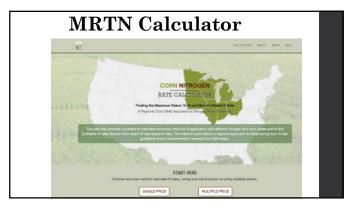

□ 0% P₂O₅ п 10% Р₂О₅ $_{\scriptscriptstyle \square} \quad 0\% \ K_2O$ п 10% K₂O

52

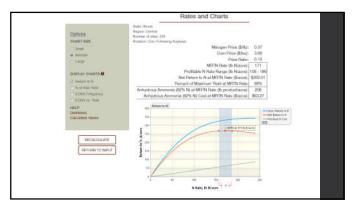
Soil Fertility -

Variable Rate Technology

• Global Positioning Systems are allowing accuracy of testing and mapping



53


Soil Fertility -

Nitrogen

- $\boldsymbol{\cdot}$ Not a consideration for soybeans (as long as have grown a legume recently)
- · Very mobile nutrient (atmosphere/soil/water)
- ${}^{\circ}$ For many years rate of 1.2 lb. N/bushel of yield goal now use N Rate Calculator (MRTN)
- * A bushel of corn removes .8 pounds N * 200 bushel yield takes out 160 lb
- $^{\circ}$ 200 bushel crop needs 240 lb. in the plant = 1.2 #

55

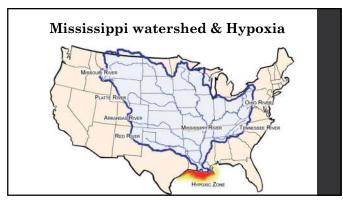
56

Soil Fertility - Nitrogen

- Sources of Nitrogen
 Soybeans (normally 40# N leftover)
 Alfalfa (can be as high as 100# N leftover)
- Manure (depends on livestock species)
- Anhydrous Ammonia (82% N) (82-0-0)
- · Urea (45% N) (45-0-0)
- Solutions (normally 28-32%N)(28-0-0)

Nitrogen Timing

- · Soil testing can be used but timing critical
- N needed most at pollination and fertilization
- $^{\circ}$ Fall applied (with stabilization) COOL soils
- Spring applied (stabilization & timed planting)
- \cdot Side dressed (challenge for large acres or weather)
- ${}^{\raisebox{-.4ex}{$\scriptscriptstyle\bullet$}}$ Most mobility at high moisture and warm temperature



58

Nitrogen Management Concerns ABOUT UN PENDS LATEST MANNA MITROGEN MANAGEMENT N. WATCH N. W

4 R's – rate, source, timing, placement

59

Soil Fertility - Phosphorus · Triple Super Phosphate - 46% P (0-46-0)

- Diammonium Phosphate-46% P & 18% N · DAP (18-46-0)
- ${}^{_{\bullet}}$ Monoammonium Phosphate 52% P, plus 11% N
- MAP (11-52-0)
- Maintenance (new rate Fall '17)
- * Each bushel removes .37lb. P_2O_5
- 200 bu/A 74 # $\mathrm{P_2O_5},\,(160\,\mathrm{\#\,DAP})$
- Soybeans –
- $\dot{\cdot}$ Each bushel removes .75 lb. $\rm P_2O_5$ $\dot{\cdot}$ 60 bu/A \cdot 45 # $\rm P_2O_5$, (97 # DAP)

61

Phosphorus Buildup

 $\begin{tabular}{ll} \bullet Soils Natural ability to supply - thickness of loess \\ \bullet Build P_t to 40 (High) & None if >60 \\ \bullet Build P_t to 45 (Medium) & None if >65 \\ \end{tabular}$

 \bullet To Build, Add $9\#P_2O_5$ to raise the soil test $P_11\#$

- · Build P₁to 50 (Low) None if >70

62

Potassium

- ${}^{\circ}$ Potash (KCI) most common (60% K)
- · Also immobile, needs placement
- Maintenance new rates Fall '17

- * Each bushel removes .24 lb. K_2O * 200 bu/A 48 # K_2O , (80 # Potash)
- · Soybeans -
- Soybeans —
 Each bushel removes 1.17 lb. K₂O
 60 bu/A 70.2# K₂O, (117# Potash)

Potassium

- · Ability to supply based on
 - CEC Cation Exchange Capacity (clay, OM, drainage, etc.)
- Build Low to 260, build High to 300
- Building Program = 4 # K_2O
- · per soil test number to grow
- ${\boldsymbol{\cdot}}$ Little potential

 - if K if higher than:
 360 for "high" soils (retest in 4 years)

Potassium Recommendations

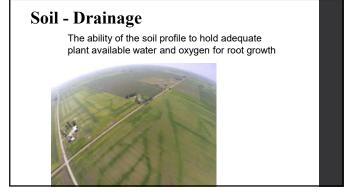
Tests on soil samples that are taken before May 1 or after September 30 should be adjusted downward as follows: subtract 30 for the dark-colored soils in central and morthern Illinois; subtract 45 for the light-colored soils in central and northern Illinois and for fine-textured bottom-land soils; subtract 60 for the medium- and light-colored soils in southern Illinois.

64

Soil Fertility -

Micronutrients

- ${\color{red} \cdot} Normally \ \underline{tissue} \ test, \ rather \ than \ soil \ test$
- •Sulfur beginning to show, especially on sandy soils
- ·Will likely grow in need as we grow yields


65

Cover Crops

Much interest in Cover Crops - Why?

- Soil erosion protection
- May reduce soil compaction
- May help suppress winter annual weeds
- Additional Organic Matter for soil no harvest of cover crops — soil tilth, porosity, infiltration
 • Nutrient tie-up for release to next crop
- Researching income producing cover crops
- Pennycress (ISU/WIU)

Weed Control

- Tolerable Weed Control What is it?
- · More a landowner concern/personal pride issue
- ${}^{\scriptscriptstyle \bullet}$ Are we spending more than necessary?
- $^{\circ}$ Generally 1 lb. of weed equals 1 lb. less crop

70

Weed Control -(con't)

- · Trends
- Growing number of post-emergent products rather than pre-
- Using MANY less pounds per acre than in past decades
- ${}^{\textstyle \star} \text{As}$ we reduce tillage, we spend more on chemicals
- 98% of our crop land has herbicide application
- Weed resistance is now an issue, need to switch "families" glyphosate problems
- · Genetically altered crops allow special herbicide programs

71

Insect Issues

- Changing corn rootworm pressures with rotated corn
- *Bt genetics and corn borer management
- ·Spider mites (not an insect) and soybeans

Disease Pressures

- · Stalk rot in corn
- · Foliar Diseases
- · Cyst Nematode, BSR, SDS in soybeans
- · Increasing problems

Summary

- Knowledge of Farm (Agronomy Handbook)
- $\hbox{$\, ^{\circ}$ Business Partnership (Communicate}!!)$}$
- · Annual Planning between partners
- · Farm management can assist
- · Consultants available

73

Thank you for coming! Final session: Grain Marketing

March 8, 2018

